Characterization of high-Q optical microcavities using confocal microscopy.

نویسندگان

  • Rajan P Kulkarni
  • Scott E Fraser
  • Andrea M Armani
چکیده

Confocal microscopy was initially developed to image complex circuits and material defects. Previous imaging studies yielded only qualitative data about the location and number of defects. In the present study, this noninvasive method is used to obtain quantitative information about the Q factor of an optical resonant cavity. Because the intensity of the fluorescent signal measures the number of defects in the resonant cavity, this signal is a measure of the number of surface scattering defects, one of the dominant loss mechanisms in optical microcavities. The Q of the cavities was also determined using conventional linewidth measurements. Based upon a quantitative comparative analysis of these two techniques, it is shown that the Q can be determined without a linewidth measurement, allowing for a noninvasive characterization technique.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An overview of scanning near-field optical microscopy in characterization of nano-materials

Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...

متن کامل

An overview of scanning near-field optical microscopy in characterization of nano-materials

Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...

متن کامل

Heavy water detection using ultra-high-Q microcavities.

Ultra-high-Q optical microcavities (Q>10(7)) provide one method for distinguishing chemically similar species. Resonators immersed in H(2)O have lower quality factors than those immersed in D(2)O due to the difference in optical absorption. This difference can be used to create a D(2)O detector. This effect is most noticeable at 1,300 nm, where the Q(H(2)O) is 106 and the Q(D(2)O) is 107. By mo...

متن کامل

An optical fiber-taper probe for wafer-scale microphotonic device characterization.

A small depression is created in a straight optical fiber taper to form a local probe suitable for studying closely spaced, planar microphotonic devices. The tension of the "dimpled" taper controls the probe-sample interaction length and the level of noise present during coupling measurements. Practical demonstrations with high-Q silicon microcavities include testing a dense array of undercut m...

متن کامل

Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy.

We report the fabrication and optical characterization of individual ZnO vertical nanowire laser cavities. Dilute nanowire arrays with interwire spacing >10 microm were produced by a modified chemical vapor transport (CVT) method yielding an ideal platform for single nanowire imaging and spectroscopy. Lasing characteristics of a single vertical nanowire are presented, as well as high-resolution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics letters

دوره 33 24  شماره 

صفحات  -

تاریخ انتشار 2008